
Cytokine 82 (2016) 1–3
Contents lists available at ScienceDirect

Cytokine

journal homepage: www.journals .e lsev ier .com/cytokine
Editorial: Cytokines in inflammation, aging, cancer and obesity
http://dx.doi.org/10.1016/j.cyto.2016.03.011
1043-4666/� 2016 Elsevier Ltd. All rights reserved.
This special issue contains a collection of articles that describe
various cytokine-associated pathologies and mechanisms involved.
As the key messengers of information relay in the body, cytokines
play crucial roles in development, homeostasis and physiological
functions. Under pathological conditions, changes in cytokine pro-
duction and bioavailability orchestrate the body’s defense against
invading pathogens or altered functions in an effort to re-establish
homeostasis. Sometimes these cytokine networks go awry, con-
tributing to diverse pathologies. The CIACCO symposium began
as a small gathering of Québec (Canada) researchers working on
diverse disease models to create a forum to discuss cytokines, cyto-
kine signaling and its dysregulation, with the goal of benefitting
from each other’s expertise and promoting knowledge integration
and synthesis of new ideas. The acronym CIACCO stands for Cytoki-
nes in Inflammation, Aging, CanCer and Obesity, reflecting the
interests of the research groups involved in this initiative. This
diversity is reflected in the articles assembled in this special issue.

Allergies and asthma continue rising in the western world [1].
These acute inflammatory reactions are induced by allergens and
are mediated by type-2 immune response (so-called because of
the differentiation of activated CD4+ T cells toward Th2 type cells)
[2]. However, asthma and asthma exacerbations are also induced
by respiratory viral infections [3]. In the majority of virus-induced
type-2 immune response, the underlying mechanisms remain
unexplained. Recent advances point to the active role of innate
lymphoid cells (ILCs) in all types of adaptive immune responses
[4]. ILCs are distinct groups of lymphocytes that lack lineage speci-
fic T cell markers and T cell antigen receptor yet display cytokine
profiles resembling those of classical Th1, Th2 and Th17 cells.
Based on the transcription factors underlying their differentiation
and cytokine profile, ILCs are classified into ILC1 (IFNc), ILC2 (IL-
5, IL-13) and ILC3 (IL-17, IL-22) groups [5,6]. It has become clear
that ILC2 cells are the key mediators of type 2 immunopathology
associated with allergic inflammatory responses such as asthma,
atopic dermatitis and respiratory distress induced by viral infec-
tions. Fritz and colleagues review the various positive and negative
regulators of ILC2 in type 2 immunopathologies at the mucosal
surfaces, and the critical role of interferons in this regulation [7].

Chronic viral infections such as human immunodeficiency virus
(HIV) and hepatitis virus are characterized by impaired activation
and differentiation, or exhaustion of CD8+ T lymphocytes [8–10].
Cytokines play crucial roles in shaping CD8+ T cell responses
[11,12]. In this issue, two reviews highlight recent progress toward
understanding cytokine-mediated modulation of T cell functions.
Beltra and Decaluwe describe how certain cytokines contribute
to the development of T cell exhaustion, which may have evolved
as a mechanism to thwart tissue damage caused by persistent T
cell activation during chronic viral infections, and how other
cytokines could be exploited to reverse this state and reinstate
functional anti-viral T cell responses [13]. Richer and colleagues
provide an update on cytokine-dependent modulation of effector
CD8+ T cell functions, particularly the role of inflammatory cyto-
kines. They also propose that certain inflammatory cytokines, for
example, IL-15 induced by type-I interferons, may function as an
early warning system to alert the memory T cell pool, and in doing
so, facilitate robust expansion of antigen specific T cells [14].

Reconstitution of T cells has important clinical applications in
immunodeficiency states caused by infections (HIV), treatment of
malignancies or following organ transplantation [15]. Cytokines
have a central role in all approaches aimed at restoring T cell num-
bers. Particularly, IL-7 and IL-15, which are essential for T cell
development in the thymus and for maintaining naïve and mem-
ory T cell compartments in the periphery, are being evaluated clin-
ically for restoring a functional immune system in immuno-
compromised individuals [16,17]. Guimond and colleagues discuss
the negative aspects of using IL-7 and IL-15 to improve immune
reconstitution after allogeneic stem cell transplantation, wherein
these cytokines also promote graft versus host disease [18]. They
also highlight the potential utility of the chemokine CXCL-12
(SDF-1a) in alleviating these side effects. Diminishing immune
functions and increased susceptibility to infections are also the
consequences of physiological aging, resulting from thymic involu-
tion, reduced repertoire diversity of the peripheral T cell pool and
impaired B lymphocyte functions [19,20]. Various approaches such
as treatment with IL-7 and keratinocyte growth factor are being
tested clinically to rejuvenate the declining thymic functions. Rafei
and colleagues discuss the role of another cc-utilizing cytokine, IL-
21, in boosting thymopoiesis. IL-21 has been very well studied in
the context of its essential role in antibody production and pre-
venting CD8+ T cell exhaustion, and in autoimmunity [21,22]. The
findings of Rafei and colleagues indicate that IL-21 treatment of
aged mice boosts thymocyte progenitor cells and T cell maturation
and emigration to the periphery, raising the possibility of using IL-
21 to restore T cell functions upon aging and following iatrogenic
damage to the thymus [23].

Regulation of cytokine signaling is critical to control the poten-
tial of many cytokines to cause a wide-range of pathologies includ-
ing autoimmunity and cancer [24]. This regulation is achieved at
many levels namely, downregulation of receptor chains, release
of soluble receptors and decoys, recruitment of phosphatases to
the activated receptor chains to inactivate the JAK kinases, induc-
tion of feedback inhibitors such as SOCS proteins that attenuate
signal transduction, blockade of nuclear translocation of STAT tran-
scription factors or inhibition of their activities by the PIAS mole-
cules [24,25]. Ali Ahmad and colleagues describe the importance
of the IL-18 binding protein (IL-18BP), a natural regulator of IL-
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18 bioactivity, in preventing tissue destruction, and elaborate how
impaired production of IL-18BP contributes to the pathogenesis of
HIV infection [26]. Pike and Tremblay discuss the role of protein
tyrosine phosphatases (PTP) in regulating cytokine signaling with
particular emphasis on PTPN1 (PTP1B) and PTPN2 (TC-PTP) in lym-
phoid malignancies [27].

Members of the SOCS family proteins are important feedback
inhibitors of the JAK-STAT signaling pathway [28]. SOCS1 and
SOCS3 are implicated regulating the innate and adaptive arms of
the immune system by preventing aberrant activation of macro-
phages and T lymphocytes [29]. These two SOCS proteins are also
implicated in regulating growth factor signaling via receptor tyro-
sine kinases [30]. The diversity of SOCS-regulated signaling path-
ways implicates them in maintaining homeostasis at cellular,
organ and organismal levels. In this issue, Kandhi et al., show that
SOCS1 is an important regulator of liver fibrosis and describe a role
for SOCS1 in regulating growth factor signal transduction in hep-
atic stellate cells [31].

Many tumors repress the SOCS1 gene by epigenetic mecha-
nisms such as promoter CpG methylation and by miRs such as
miR-155, miR-19 and miR-30d. Hence, SOCS1 is considered a
tumor suppressor in lymphoid cells and several non-lymphoid cell
types [32]. The tumor suppressor mechanisms of SOCS1 operate
via regulation the JAK-STAT and RTK signaling pathway as well
as via other mechanisms such as co-operation with the tumor sup-
pressor p53 and regulation of the oncogenic potential of the cell
cycle inhibitor p21CIP1 (CDKN1A) [33,34]. Mukhopadhyay et al.,
report that the STAT5 transcription factor, an upstream activator
of SOCS1, is induced by the p53 tumor suppressor following DNA
damage [35]. Since SOCS1 can activate p53 [33], the authors pro-
pose a positive feedback mechanism that may halt cancer progres-
sion resulting from aberrant cytokine stimulation [35]. Restoring
SOCS1 expression is therefore considered as a promising cancer
therapeutic approach. Miganacca and colleagues describe the
development of miR-sponges to antagonize miR-155 and miR-19
in an effort to restore SOCS1 expression in tumor cells [36]. Even
though SOCS1 is generally considered a tumor suppressor, there
are instances where certain oncogenic pathways exploit SOCS1 to
promote tumorigenesis, and SOCS1 overexpression does not lead
to growth suppression [37,38]. Such a scenario has been docu-
mented for other well-known tumor suppressor molecules and
pathways, for example, p21CIP1 and the TGFb pathway [39,40]. Sau-
cier and colleagues document the evidence for the paradoxical
oncogenic potential of SOCS1 in cancers [41].

This decade is witnessing the emergence of obesity and its com-
plications namely, insulin resistance, type 2 diabetes, liver dis-
eases, dyslipidemia, atherosclerosis and related cardiovascular
diseases, as a major healthcare burden [42–44]. While healthy eat-
ing and an active lifestyle are the primary and the most effective
ways to prevent obesity and reverse early stages of the deregulated
metabolic state, patients with advanced disease will benefit from
therapeutic intervention [45]. Inflammatory cytokines, which play
a key role in perpetuating a vicious cycle of chronic inflammation
in adipose tissues, are a potential therapeutic target in obese
patients [46,47]. Besides, by targeting inflammation in obesity,
these treatments could also thwart obesity-associated cancer
development [48]. In this issue, Cepero-Donates and colleagues
demonstrate the pathogenic role of IL-15 in promoting lipid accu-
mulation in the liver following diet-induced obesity, and show that
this is accompanied by IL-15-dependent increase in chemokine
gene expression and infiltration of immune cells [49]. In an accom-
panying paper, the same group shows that IL-15 derived from
macrophages and hepatocytes are critical for maintaining NK and
NKT cell subsets in the liver, but the loss of hepatic IL-15 does
not abrogate the systemic IL-15-dependent development of fatty
liver disease [50].
While innate immune cells are the major source of the inflam-
matory cytokine production in obese adipose tissues, adaptive
immune cells also contribute to perpetuating the inflammatory
cascade. Thibodeau and colleagues provide an overview of the role
of antigen presenting cells and the adaptive arm of the immune
response in this pathogenic process [51]. Inflammatory cytokines
such as IL-6 in general decrease glucose utilization and contribute
to the development of insulin resistance and obesity [47]. On the
other hand, cytokines such as ciliary neurotrophic factor, carditro-
pin-1 and oncostatin M, which utilize the gp130 chain of the IL-6
receptor for signaling, exert anti-obesity roles by reducing food
intake, inhibiting adipogenesis or increasing glucose uptake, as
summarized by Pasquin et al., in a brief review [52].

Pleiotropism is a well-recognized attribute of many cytokines.
However, it is not uncommon that a particular cytokine or
growth factor is extensively studied in the context of specific
functions in certain cell types and tissues than others. Often,
the less well-known functions of these cytokines are drowned
in the din of its primary focus, and fail to get the attention they
deserve. One such example is hepatocyte growth factor, which
has been extensively studied for its physiological functions in
embryogenesis, organogenesis, tissue repair, oncogenesis and
metastasis [53,54]. Several recent studies have renewed the
interest in HGF-MET axis within the immune system. These
include the potential role of HGF in promoting thymopoiesis, T
cell reconstitution and immune tolerance [55–57]. The last article
reviews in detail the functions of HGF-MET signaling in various
cell types of the immune system [58].

The CIACCO-2015 symposium has largely succeeded in its goal
to bring together a diverse array of cytokine research under one
roof. The CIACCO acronym also signifies the need for such cross-
disciplinary interaction in advancing cytokine biology: Ciacco is a
character in the Divine Comedy by Dante Alighieri, but his identity
and true nature were not clearly described. The way Ciacco pre-
sents himself to Dante in Hell allows various interpretation of his
character – both good and bad. Likewise, cytokines can exert both
good and deleterious effects, and these effects are interpreted in
different ways depending on the context. By bringing these ideas
together, the CIACCO-2015 symposium has succeeded in making
a small but significant contribution to the advancement of cytokine
biology.
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